The realization space is
  [1                       x2   1   1   0    1   0                        1                               x2                                   0    1]
  [1   x1^2 - x1*x2 - x1 + x2   0   0   1   x1   0                        1           x1^2 - x1*x2 - x1 + x2                                   1   x1]
  [1   x1^2 - x1*x2 - x1 + x2   0   1   0    0   1   -x1^2 + x1*x2 + x2 + 1   -x1^2*x2 + x1*x2^2 + x2^2 + x2   -2*x1^2 + 2*x1*x2 - x1 + 3*x2 + 1   x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal with 2 generators
avoiding the zero loci of the polynomials
RingElem[2*x1^3 - 2*x1^2*x2 - x1^2 - x1*x2 - 2*x1 + 4*x2, 2*x1^4 - 6*x1^3*x2 - x1^3 + 4*x1^2*x2^2 - x1^2*x2 - x1^2 + 4*x1*x2^2 + 5*x1*x2 - 4*x2^2, 2*x1^3 - 2*x1^2*x2 + x1^2 - 3*x1*x2 - x1 + x2, 2*x1^3 - 2*x1^2*x2 + x1^2 - 3*x1*x2 - x1 + x2 - 1, 2*x1^2 - 2*x1*x2 + x1 - 3*x2 - 1, x2, 2*x1^3 - 2*x1^2*x2 - 2*x1*x2 - 2*x1 + 3*x2, 2*x1^4 - 6*x1^3*x2 - x1^3 + 4*x1^2*x2^2 - 2*x1^2*x2 - 2*x1^2 + 5*x1*x2^2 + 6*x1*x2 + x1 - 3*x2^2, x1^3*x2 - x1^2*x2^2 - x1^2 - x1*x2^2 + x1 + x2^2, x1^2 - 2*x1*x2 - x1 + x2, x1^2*x2 + x1^2 - x1*x2^2 - x1*x2 - x1 - x2^2, x1^3 - x1^2*x2 + x1^2 - 2*x1*x2 - 2*x1 + x2, x1^3*x2 - x1^2*x2^2 + x1^2*x2 - x1^2 - 2*x1*x2^2 + x1 + x2^2 - x2, x1^2 - x1*x2 - 1, x1 - x2 - 1, x1, x1 - 1, x1^2 - x1*x2 - x2, x1^4 - 3*x1^3*x2 - 2*x1^3 + 2*x1^2*x2^2 + 3*x1^2*x2 + x1^2 - x2^2, x1^3 - x1^2*x2 - x1*x2 + x2 - 1, x2 - 1, x1^2 - x1*x2 - x1 - x2^2 + x2, x1^3 - 2*x1^2*x2 + x1*x2^2 - x1 - x2^2 + x2, x1 - x2, 2*x1^4 - 4*x1^3*x2 - x1^3 + 2*x1^2*x2^2 - 3*x1^2*x2 - 2*x1^2 + 4*x1*x2^2 + 4*x1*x2 + x1 + x2^2, 2*x1^4 - 4*x1^3*x2 - x1^3 + 2*x1^2*x2^2 - x1^2*x2 - 2*x1^2 + 2*x1*x2^2 + 5*x1*x2 + x1 - 2*x2^2, 2*x1^4 - 6*x1^3*x2 - x1^3 + 4*x1^2*x2^2 - 2*x1^2*x2 - 2*x1^2 + 5*x1*x2^2 + 6*x1*x2 + x1 - 2*x2^2, 2*x1^4 - 4*x1^3*x2 - x1^3 + 2*x1^2*x2^2 - x1^2*x2 - x1^2 + 2*x1*x2^2 + 3*x1*x2 - x2^2, x1^2 - x1*x2 + x1 - 2*x2, x1^2 - x1*x2 + x1 - 2*x2 - 1, 2*x1^3 - 2*x1^2*x2 - x1^2 - x1*x2 - 2*x1 + 3*x2, 2*x1^4 - 6*x1^3*x2 - x1^3 + 4*x1^2*x2^2 - x1^2*x2 - x1^2 + 4*x1*x2^2 + 5*x1*x2 - 3*x2^2, 2*x1^3 - 2*x1^2*x2 + x1^2 - 3*x1*x2 - x1 - 1, 2*x1^4 - 4*x1^3*x2 - x1^3 + 2*x1^2*x2^2 - x1^2 + x1*x2^2 + 4*x1*x2 - 3*x2^2 - x2, 2*x1^2 - 2*x1*x2 + x1 - 3*x2, x1 + 1, x1^3*x2 - x1^2*x2^2 - x1^2*x2 - x1^2 + x1*x2 + x1 + x2^2, x1^3*x2 - x1^2*x2^2 - x1^2 - x1*x2^2 + x1*x2 + x1 - x2, x1^4 - 3*x1^3*x2 - 2*x1^3 + 2*x1^2*x2^2 + 2*x1^2*x2 + x1^2 + x1*x2^2 + x1*x2 - x2^2, x1^3 - x1^2*x2 - x1*x2 - 1, x1^4 - 2*x1^3*x2 - x1^3 + x1^2*x2^2 + x1^2*x2 + x1^2 - x1 - x2^2]